
iNLC: Iterative Noisy Label Correction

Seungyeon Koo
Department of Electronic Engineering

Hanyang University
Seoul, Korea

rrxloyeon@hanyang.ac.kr

Si-Dong Roh
Department of Electronic Engineering

Hanyang University
Seoul, Korea

sdroh1027@hanyang.ac.kr

Sangki Park
Department of Electronic Engineering

Hanyang University
Seoul, Korea

skpark1101@hanyang.ac.kr

Ki-Seok Chung*
Department of Electronic Engineering

Hanyang University
Seoul, Korea

kchung@hanyang.ac.kr

Abstract—Convolutional neural networks have achieved re-
markable success in image classification, but the presence of
noisy labels in the training dataset can significantly hinder their
achievement. Creating clean labeled datasets is time-consuming;
therefore, learning with noisy datasets is a practical approach
to solving real-world problems. In this paper, we propose a
novel method called iterative Noisy Label Correction (iNLC)
that employs gradual data refining to mitigate the impact
of incorrect labels in practice. iNLC consists of three main
components: robust prior learning, ensemble strategy, and grad-
ual data refining. The robust prior learning trains the prior
model via semi-supervised learning to make it more robust
against noise and facilitate subsequent gradual refinement. The
ensemble strategy improves performance by combining different
augmentation strategies, and the gradual data refining process
progressively incorporates additional data into the training using
fine-grained learning schedules based on data volume in order
to prevent overfitting and underfitting. Our method achieved the
classification accuracy of 93.98%, 92.96%, and 75.32% for noise
ratios of 0.2, 0.4, and 0.8, respectively, on PreAct-ResNet-18 on
CIFAR-10.

Index Terms—learning with noisy label, semi-supervised learn-
ing, ensemble

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved re-

markable success in various tasks such as image classification,

object detection, and semantic segmentation. In training these

models, however, the quality of the dataset plays a crucial role

in achieving high accuracy. In general, datasets are human-

annotated; therefore, if care is not taken when creating the

dataset, incorrectly annotated labels (i.e., noisy labels) may

be included, and this noise harms the performance of network

[1]–[3]. Furthermore, labeling without noisy data is time-

consuming and practically infeasible. To get a massive amount

of data easily, some datasets are created by crawling images

and texts from the web, such as WebVision [4], Clothing 1M

[5], and social media images with hash tags [6]. Unfortunately,

in these cases, a significant amount of noisy data may be

mixed in. To solve these noisy data problems, several types

of research have been conducted to filter out noisy labels to

reduce the harmfulness of incorrect labels.

According to Arpit et al. [7], neural networks tend to learn

mostly on easy samples in the training dataset. In general,

data without noisy labels (i.e., clean data) turn out to be easier

samples than those with noisy labels (i.e., noisy data): the loss

converges faster for clean data than for noisy data. Based on

this observation, [8] and [9] suggested methods to exclude

noisy labels from training so that a model is trained only with

clean data samples. However, the classification accuracy of

these methods is limited because of the information loss due

to excluding a significant portion of data. Therefore, a method

called learning with noisy labels (LNL) that employs semi-

supervised learning (SSL) has been studied as an alternative.

SSL-based LNL trains models by picking out noisy data,

removing their labels, and converting them to clean data in

order to include them in the training process. In this paper, we

propose a new method called iterative Noisy Label Correction

(iNLC) that can be used as an add-on to the SSL-based LNL

method. The proposed iNLC method consists of the following

three parts:

• Robust Prior Learning: To train the prior model, we

combine a noisy label detector and an SSL method to

make the model more robust to noisy labels. We use the

second stage of O2U-Net [9] for noisy label detection

and FixMatch [10] for SSL. The details are described in

Section III-A.

• Ensemble: The accuracy of the network depends on

the augmentation strategy. To mitigate the influence of

augmentation strategies and ensure stable learning, we

apply ensemble techniques to models trained using vari-

ous types of augmentation methods. In each generation,

the network is trained with three different augmentation

strategies. The augmentation strategies are listed in Ta-

ble I.

• Gradual Data Refining: Gradual data refining alleviates

the deterioration of deep features caused by noisy data.

99

2023 17th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

979-8-3503-7091-1/23/$31.00 ©2023 IEEE
DOI 10.1109/SITIS61268.2023.00024

We iteratively refine the data to increase the amount of

training data progressively. In addition, we also apply

epoch scheduling to prevent overfitting or underfitting

due to changes in data size. The details are described

in Section III-B3.

II. RELATED WORK

A. Learning with Noisy Labels

Zhang et al. [2] reported that when CNNs were trained with

noisy data, their performance would decrease significantly

because they tended to overfit to incorrectly labeled data.

Therefore, studies for LNL have suggested various ways to

design the loss function to exclude noisy data or to make the

model more robust against noisy labels [8], [9], [11], [12].

Reed et al. [11] proposed a perceptual consistency objective to

ensure that similar percepts should make the same prediction.

Their objective is to replace the target of cross entropy with a

convex combination of the noisy training label and the current

prediction of the model, so that correction can be made even

if the noise distribution is hidden. However, the impact of the

noisy label cannot be ignored, as the noisy label is required

to calculate the bootstrapping loss. The bootstrapping loss is

divided into soft loss and hard loss. The soft loss uses the

current prediction of the convex combination with softmax,

and the hard loss uses the result of argmax. Patrini et al.

[12] proposed a loss correction approach that predicted a

noise transition matrix that contained information about the

probability that a given label was contaminated with other

classes. This method learns by weighting the loss with the

noise transition matrix. Huang et al. [9] proposed O2U-Net, a

noisy label detection method that can be easily implemented

using learning rate scheduling with a few iterations instead

of complex losses. O2U-Net proceeds in three stages. In the

first stage, a model is trained until the validation accuracy

converges. In the second stage, it performs short-period (e.g.,

ten epochs) cyclical training to avoid overfitting and learns

robustly to noisy labels. In the last stage, it calculates the

average loss based on the cross entropy loss in the second

stage to exclude the top-k% data and pass the remaining clean

data to the final training network. However, the pretraining

process of O2U-Net is not robust as it learns with noisy

data, which limits the performance of noisy label detection in

the subsequent cyclic training phase. Therefore, we replaces

the pre-training phase of O2U-Net in the iNLC with a semi-

supervised learning approach.

B. Semi-Supervised Learning

Semi-supervised learning is a method of training a net-

work using both labeled and unlabeled data to leverage the

advantages of both supervised and unsupervised learning. It

generally updates the network by defining a new loss function

for unlabeled data and combining it with the loss function for

labeled data [10], [13], [14]. Berthelot et al. [13] proposed

a consistency regularization method called Mixmatch. The

labeled data loss of MixMatch is the widely used cross-

entropy loss, and the unlabeled loss is designed to ensure the

consistency of predictions for transformed inputs. Evolving

from the previous approach, ReMixMatch [14] targets logits

estimated with weakly augmented input and learns them to

maintain prediction consistency of weakly augmented inputs

and strongly augmented inputs. FixMatch [10] selectively

trains the consistency of augmentations that have logits above

a certain threshold in order to boost unsupervised learning.

Schick et al. [15] used iterative ensembles to perform semi-

supervised learning on a cloze question task. Inspired by

[15], we verified that iterative ensembles used in the natural

language process domain are also effective for LNL tasks in

the image domain.

III. PROPOSED METHOD

In this section, we illustrate the process of iNLC and how

to apply it to existing semi-supervised learning-based LNL

methods. Steps are described in two parts: robust prior model

learning as in a semi-supervised learning approach, which

serves as a base model of iNLC, and the iNLC algorithm

itself.

A. Robust Prior Learning
Training a robust prior model is crucial as it serves as the

initial model during the subsequent gradual data refinement.

The initial data refining process employs a noisy label detec-

tion approach to distinguish clean data from the initial noisy

dataset D. It utilizes clean data as labeled data for semi-

supervised learning to perform the prior learning. Robust prior

learning proceeds as follows:

1) Initial data refining: We divide D into a labeled dataset

X and an unlabeled dataset U . We assume the dataset D
contains symmetric noise with a noise ratio r and contains

rN noisy labels out of n(D) = N data samples. We define

remain ratio p as the proportion of data that will remain labeled

and forget ratio f = 1− p as the proportion of data that will

not be labeled. Because the noise ratio is unknown in the

real world, we set the remain ratio p to be small. We denote

X = ((xn, yn);n ∈ (1, ..., pN)) as the labeled dataset, and

U = ((un);n ∈ (1, ..., fN)) as the unlabeled dataset when

xn and un are data, and yn is label. To divide D into X and

U , we use the noisy label detection approach proposed in [9].

According to [9], noisy data can be excluded when cyclical

training between overfitting and underfitting by tuning the

learning rate is repeatedly carried out. To facilitate the iterative

process of overfitting and underfitting, the learning rate lr at

epoch t is changed according to the following equation:

when v(t) =
(1 + ((t− 1) mod T))

T
,

lr(t) = (1− v(t))× lr(0) + v(t)× lr(0)

10

(1)

where lr(0) is the initial learning rate and v(t) is the inter-

mediate term that causes the learning rate to oscillate with a

period T .

100

Fig. 1. Overview of iNLC. (a) Robust prior learning process. The O2U-Net noise detector divides the noisy dataset D into labeled dataset X and unlabeled
dataset U . (b) The NLC module. The proposed iNLC method repeats this process K − 1 times. (c) The overall iNLC process after the prior learning. After
all the iterations are finished, PK determines a soft label for every unlabeled datum. In the final step, we use this cleanly labeled dataset to train the final
model.

The network trained with Eq. 1 prioritizes learning using

clean data, leading to an increased loss of noisy data [9].

Assuming dataset D has C classes, we compute the loss for the

samples predicted as the lth class and select c0(l) = pN/C
samples of clean data where p is the remain ratio. Subse-

quently, we combine c0(l) samples for all classes to get the

clean dataset X .

2) Prior learning: We train a prior model P0 with X and

U as in a semi-supervised learning (SSL) approach. Compared

to other SSL methods [13], [14], FixMatch [10] presented

a simpler yet more accurate way to learn unlabeled data.

Therefore, we used FixMatch as the SSL method for the prior

learning process.

B. Iterative Noisy Label Correction

We propose a gradual data refining technique inspired by

Schick et al. [15] to carefully assign labels to data for which

correction is needed using strong augmentation strategies.

This section discusses the details of the module for noisy

label correction (NLC module). The proposed NLC method

proceeds in three steps: 1) augmentation, 2) ensemble, and

3) data refining. In the initial augmentation step, models are

trained differently using three types of strong augmentations.

Then, in the ensemble step, two of the three trained models are

TABLE I
AUGMENTATION STRATEGIES

i strategies
0 RandomCrop, RandomHorizontalFlip, RandAugment
1 RandomCrop, RandomRotation, RandCutout
2 RandomCrop, RandomHorizontalFlip, RandomGrayScale

combined to assign pseudo-labels to the unlabeled data. This

results in a total of three pseudo-labeled datasets U ′kj . Lastly,

the noisy label detection approach is employed to filter and

select a part of pseudo-labeled datasets as correctly assigned

labels, which are then utilized as the training data X k+1 for

the next generation. By repeating this process, iNLC gradually

corrects noisy labels, as shown in Fig. 1 and Algorithm 1.

1) Augmentation: Fig. 1 (b) shows the structure of the NLC

module. The NLC module uses an ensemble with models that

are trained with different types of strong augmentations. The

performance of a CNN network is heavily dependent on the

types of augmentation strategies. Therefore, we use strong

transformations as an augmentation strategy as shown in Ta-

ble I; RandAugment [16], RandCutOut [17], RandGrayScale.

RandGrayScale can be used as a strong strategy because CNNs

tend to learn with a bias towards the texture of an image [18].

101

2) Ensemble: Because the performance of CNN depends

on the types of augmentation strategies, inappropriate aug-

mentations could lead to a high noise ratio in pseudo-labeling.

To alleviate this problem, we select the top ck samples with

the smallest loss and use them as the refined dataset for the

next generation. Two models form an ensemble weighted by

respective scores of the two models. The score skj of a model

Pk
j at the kth generation with the jth augmentation function

Augmentj is defined as the accuracy of the prior model

evaluated with dataset X k
j :

skj = accuracy(y,Pk
j (x)), (x, y) ∈ Augmentj(X k

j). (2)

The final model Pfin uses a weighted ensemble of the three

models to generate a soft label for the unlabeled dataset and

then updates the parameter with distillation loss [19] using

only the clean dataset.

3) Gradual Data Refining: As training with noisy data in

the dataset would be worse than training with an insufficient

amount of data, the clean data should be distinguished from

the noisy data. However, in practice, the quantity of clean

data in D is unknown. Thus, after the initial amount of clean

data is set conservatively, a certain amount of noisy labels is

corrected. Then, the expanded clean data is utilized to create

a better classification model gradually. To increase the data

involved in training while reducing the noise ratio in X k, the

size of the refined dataset X k is progressively increased by a

scale factor d per generation. In each generation, Op samples

ck data from the U ′k, then sampled data are merged with the

X . The number of sampled data of lth class (ck(l)) and the size

of the refined dataset (n(X k)) are determined by the following

equations, respectively:

ck(l) = (dk−1 − 1)c0(l),

n(X k) =
C∑

l=1

{ck(l) + c0(l)}.
(3)

The total count of generations (K) is determined by a scale

factor d and the conservatively determined remain ratio p as

follows:

K = �−log(p)
log(d)

�. (4)

The epochs are scheduled in proportion to the epochs of

the final model (efin) since a fixed epoch scheduling in all

generations may lead to overfitting in earlier generations or

underfitting in later generations. By employing a variable

epoch scheduling, we can not only achieve performance im-

provements but also reduce a significant amount of training

time by eliminating redundant learning processes in the early

generations. The size of the epoch for the kth generation (ek)

is determined as follows:

ek = efin ·
∑C

l=0 {c0(l) + ck(l)}
N

. (5)

The sampling process for data is as follows. A pseudo-

labeled dataset U ′kj is created by ensembling the predictions

of the two models on the unlabeled dataset. Next, the dataset

is sorted in ascending order of loss values. Finally, the top-ck
samples are selected. Although the O2U-Net noise detector

selects the cleanest examples, some bad examples may still

be mixed in. So, we use soft-labeled loss [20]. We create X ′
by adding a clean label to the unlabeled dataset to train the

final model. The clean label is the weighted ensemble of the

three trained models PK
j (j = 0, 1, 2) with the score sKj , and

the best augmentation strategy is used to train Pfin.

Algorithm 1: Iterative Noise Label Correction

1 Input: prior learned network P0, initial labeled dataset

X = ((xn, yn); n ∈ (1, ..., pN)), unlabeled dataset U
= ((un); n ∈ (1, ..., fN)), noise detector Op,

augmentation strategies (Augmentj ; j ∈ (0, 1, 2)),
scale factor d, total generations K, the number of

pseudo-labeled data ck
2 Output: refined noisy dataset X ′
3 /* Iterate the generation */
4 X 1 = X
5 for k = 1 to K do

6 /* Train refined dataset */
7 for augment id j ∈ {0, 1, 2} do
8 Initialize Pk

j with P0

9 X̂ k
j = Augmentj(X k

j)

10 Train Pk
j (X̂ k

j)
11 Get Score skj
12 end

13 /* Refine U by above trained model */
14 for augment id j ∈ {0, 1, 2} do
15 Assign a, b �= j
16 yu,j =

argmax{(skaPk
a (U) + skbPk

b (U))/(ska + skb)}
17 U ′j = ((un, yu,j,n); n ∈ (1, ..., fN))
18 mask = Op(Concat(X ,U ′j), ck+1)

19 X k+1
j = X +mask(U)

20 end

21 end

22 yu =

2∑

j=0
sKj PK

j (U)
2∑

j=0
sKj

23 X ′ = ((un, yu,n); n ∈ (1, ..., fN))
24 return X ′

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We injected symmetric noisy labels into the CIFAR-10 train-

ing set and used PreAct ResNet-18 as the CNN architecture. In

augmentations, we used n = 2 for RandAug; the probability

of image transformation is 0.1 for RandGrayScale; and 0.5 for

102

Fig. 2. Sensitivity analysis of n(XK). To find an appropriate scale factor, we varied d from 1.5 to 2.5 in increments of 0.25 and measured the test accuracy.
The results revealed that accuracy is influenced more by n(XK) than by d. To illustrate this, we plotted a graph with the x-axis representing the percentage
of n(XK) upon n(D) and the y-axis representing test accuracy. Since n(XK) is dependent on d, we indicated the corresponding d for each point.

TABLE II
HYPERPARAMETERS

Hyperparameters Prior Learning iNLC
O2U(1st) O2U(2nd) FixMatch Pk Pfin

epochs 100 20 100 scheduling 200
batch size 64 64 64 64 64
optimizer SGD SGD SGD SGD SGD

LRscheduler constant O2U Cos. Anneal. Cos. Anneal. Cos. Anneal.
Initial LR 0.01 0.01 0.01 0.01 0.01

SGD momentum 0.9 0.9 0.9 0.9 0.9
SGD weight decay 5e-4 5e-4 5e-4 5e-4 5e-4

RandCutout. We used μ = 7 and λu = 1 for FixMatch, and

T = 10 in Eq. 1. We set the remain ratio p to 0.1. However, in

the case of a noise ratio of 0.8, we set p = 0.0805 due to the

limitation of the O2U-Net that gathering more than 5,000 clean

data is infeasible. The scale factor d is 2 when the noise ratio

is 0.2 or 0.4, and d = 1.5 when the noise ratio is 0.8. Other

hyperparameters are shown in Table II. For the gradual data

refining process, the O2U-Net used the same hyperparameters

as those used in the second stage of the prior learning process.

All experiments were conducted on a single NVIDIA RTX

3090. Under these experimental settings, the iNLC process

requires 2 hours of training, and the robust prior learning step

takes 9 hours.

B. The Effect of the Scale Factor on Performance

The scale factor d determines the size of the refined dataset

n(XK). As illustrated in Fig. 2, small values of n(XK) tend

to show low accuracy. n(XK) in the final generation tends

to increase as the value of d decreases, and K may also

increase, leading to longer training times. Because the larger

amount of data in the final generation does not guarantee better

performance, we choose d = 2 for 0.2, 0.4 noise ratios, and

d = 1.5 for 0.8 to ensure the model can utilize a suitable

quantity of dataset.

C. Main Results

Table III shows the accuracy comparison results of iNLC

and other well-known LNL methods. RN and PRN mean

ResNet and PreAct-ResNet, respectively. Under all three noise

ratio conditions, iNLC outperformed the others by achieving

TABLE III
TEST ACCURACY ON CIFAR-10 (%)

Method Architecture CIFAR-10
0.2 0.4 0.8

Reed et al. (soft) [11] RN-101 83.20 69.91 18.12
Reed et al. (hard) [11] RN-101 84.88 68.90 15.59
Patrini et al. [12] RN-32 87.90 - -
Han et al. [8] 9-layer CNN 82.32 - -
Huang et al. [9] RN-101 92.57 90.33 37.76
Prior Model PRN-18 91.00 90.73 30.15
iNLC (Ours) PRN-18 93.98 92.96 75.32

TABLE IV
ABLATION STUDY

Method Accuracy (%)
iNLC 93.98
iNLC w/o gradual data refining (K = 1) 92.78
iNLC w/o ensemble 93.19
iNLC w/o fixmatch 89.36
iNLC w/o epoch scheduling 93.13

the best accuracy of 93.98% at a 0.2 noise ratio. Despite

being a CNN network with fewer layers, the test accuracy

was significantly better than O2U-Net [9]. Especially when the

noise ratio is set to 0.8, iNLC achieved an accuracy of 75.32%,

which is 37.56%p higher than O2U-Net. We also showed that

adding iNLC to the prior model can improve the accuracy

by ranging from 2.23%p to 45.17%p compared to the case

where the prior model is used alone. Our proposed method

outperforms all the compared LNL methods at a noise ratio

of 0.8, mainly due to our excellent label correction during

the gradual data refining step. The performance evaluation

of gradual data refining is described in the next section.

Our approach showed 37.56%p better performance than the

compared noisy label removal method [9] and up to 59.73%p

better performance than the compared loss correction method

[11].

103

Fig. 3. t-SNE visualization of deep features. All t-SNE visualizations utilize a randomly sampled subset of 5000 data points from the test dataset. (a-c)
represents the deep features of the prior models with each noise ratio setting. (d-f) portrays the Pfin with iNLC.

D. Ablation Study

Table IV shows how much each step of the iNLC method

affects the performance. All the performance results were

evaluated under a symmetric noise environment with a noise

ratio 0.2. To observe if there was a progressive data-cleaning

effect, we fixed the total number of generations to 1 and

measured the accuracy. The result was 92.78% which is 1.2%p

lower than the iNLC. Next, to observe the effect of the

ensemble, we redesigned it to generate pseudo-labels on its

own using only one augmentation strategy, and it achieved

an accuracy of 93.19%, which is 0.79%p lower than the

iNLC. When the FixMatch prior learning was not applied, the

accuracy result was 89.36%, which is 4.62%p lower than the

iNLC. However, as shown in Table III, it can be used without

prior learning. Finally, we trained for 75 epochs across all

generations to validate the epoch scheduling and found that

a 0.85%p reduction was observed over the epoch scheduling.

Thus, all the applied components of iNLC are confirmed to

be positively contributing to achieving better performance.

To confirm that gradually increasing the amount of data is

adequate for noise correction, we compared it to the noise

ratio of X ′ when only one generation was performed (Table

V). The results show that gradually increasing the amount of

data reduces the noise ratio of X ′ by ranging from 0.53%p

to 6.73%p. Specifically, when the noise ratio of D is 0.8, the

decrease is 6.73%p, implying that retraining the prior model

with gradual data refinement is more essential.

To confirm the validity of Eq. 4, we conducted experiments

TABLE V
NOISE RATIO OF REFINED DATASET X ′

ON REFINEMENT ITERATIONS K (%)

noise ratio in D K = 1 K = 4 Increment

0.2 8.96 8.43 -0.53%p
0.4 11.78 9.78 -2.00%p
0.8 36.02 29.29 -6.73%p

TABLE VI
TEST ACCURACY (%) ACCORDING TO K FOR EACH NOISE RATIO

K 0.2 (d = 2) 0.4 (d = 2)

0 84.34 66.34
1 92.78 89.68
2 93.70 91.18
3 93.58 92.28
4 93.98 92.96
5 93.84 92.70

of arbitrarily selecting values for K without using Eq. 4 to set

the value for K. As summarized in Table VI, if K is smaller

than the value determined by Eq. 4, it decreases accuracy

due to insufficient data utilization. On the other hand, if K
becomes larger than the value determined by Eq. 4, it leads

to data duplication, resulting in accuracy reduction due to

overfitting.

As shown in Fig. 3 and 4, we represented the 512-

dimensional deep features of the test dataset in the 2-

104

Fig. 4. Comparison between scenarios with and without gradual data refining. (a) presents the t-SNE visualization of deep features for the prior model trained
using the FixMatch approach during the prior learning phase, the best-scored model among the three models trained in each generation of iNLC, and the final
model trained on clean data. On the other hand, (b) illustrates the results of training directly on the noisy dataset without gradual data refining, serving as a
comparison to (a).

dimensional space using t-SNE [21] to demonstrate the ef-

fectiveness of iNLC. In Fig. 3, the t-SNE results of Pfin

and those of the prior model are compared. Without applying

iNLC (Fig. 3 (a-c)), there are areas of overlap between the

distributions of different classes. In contrast, when iNLC is

applied (Fig. 3 (d-f)), deep features of different classes form

more concentrated clusters.

Fig. 4 (a) illustrates the gradual change of deep features

as k increases and (b) shows deep features with additional

training with noisy dataset D (no gradual data refining). When

comparing Fig. 4 (a) and (b), the data distribution of deep

features tends to be more ambiguous than that of iNLC.

Therefore, it is confirmed that starting model training with a

small amount of the labeled dataset and gradually increasing

the amount of the labeled dataset make the model more robust.

V. CONCLUSION

Training convolutional neural networks using real-world

data is challenging mainly due to noisy labels. We propose

a new learning with noisy labels (LNL) method called iter-

ative Noise Label Correction (iNLC) that leverages gradual

data refining to mitigate the negative impact of incorrect

labels in practice. The iNLC method is composed of three

key components: robust prior learning, ensemble strategy,

and gradual data refining. We compared the accuracy of

the proposed iNLC with those of several widely-used LNL

methods under a symmetric noise condition. The experimental

results showed that iNLC outperformed the compared LNL

methods by achieving a 93.98% accuracy on CIFAR-10. We

also compared the performance of iNLC with those of the

LNLs with semi-supervised learning alone and confirmed that

adding iNLC improves the performance by up to 45.17%p.

The ablation study showed that each component of iNLC

positively contributed to performance improvement.

ACKNOWLEDGMENT

This work was supported by Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (No. 2020-

0-01304, Development of Self-learnable Mobile Recursive

Neural Network Processor Technology)

REFERENCES

[1] C. Zhang, S. Bengio, M. Hardt, M. C. Mozer, and Y. Singer, “Identity
crisis: Memorization and generalization under extreme overparameteri-
zation,” arXiv preprint arXiv:1902.04698, 2019.

[2] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[3] Q. Yao, H. Yang, B. Han, G. Niu, and J. T.-Y. Kwok, “Searching to ex-
ploit memorization effect in learning with noisy labels,” in International
Conference on Machine Learning. PMLR, 2020, pp. 10 789–10 798.

[4] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “Webvision
database: Visual learning and understanding from web data,” arXiv
preprint arXiv:1708.02862, 2017.

[5] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 2691–2699.

[6] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. Van Der Maaten, “Exploring the limits of weakly
supervised pretraining,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 181–196.

[7] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al., “A closer look at
memorization in deep networks,” in International conference on machine
learning. PMLR, 2017, pp. 233–242.

[8] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” Advances in neural information processing
systems, vol. 31, 2018.

[9] J. Huang, L. Qu, R. Jia, and B. Zhao, “O2u-net: A simple noisy label
detection approach for deep neural networks,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 3326–
3334.

[10] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying semi-
supervised learning with consistency and confidence,” Advances in
neural information processing systems, vol. 33, pp. 596–608, 2020.

[11] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich,
“Training deep neural networks on noisy labels with bootstrapping,”
arXiv preprint arXiv:1412.6596, 2014.

105

[12] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction approach,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1944–1952.

[13] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A.
Raffel, “Mixmatch: A holistic approach to semi-supervised learning,”
Advances in neural information processing systems, vol. 32, 2019.

[14] D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, K. Sohn, H. Zhang,
and C. Raffel, “Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring,” International Conference on
Learning Representations, 2020.

[15] T. Schick and H. Schütze, “Exploiting cloze questions for few-
shot text classification and natural language inference,” Computing
Research Repository, vol. arXiv:2001.07676, 2020. [Online]. Available:
http://arxiv.org/abs/2001.07676

[16] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search space,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, 2020, pp. 702–703.

[17] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[18] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,
and W. Brendel, “Imagenet-trained cnns are biased towards texture;
increasing shape bias improves accuracy and robustness,” arXiv preprint
arXiv:1811.12231, 2018.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[20] M. Lukasik, S. Bhojanapalli, A. Menon, and S. Kumar, “Does label
smoothing mitigate label noise?” in International Conference on Ma-
chine Learning. PMLR, 2020, pp. 6448–6458.

[21] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

106

